Algorithms and complexity results for graph-based pursuit evasion
نویسندگان
چکیده
We study the classical edge-searching pursuit-evasion problem where a number of pursuers have to clear a given graph of fast-moving evaders despite poor visibility, for example, where robots search a cave system to ensure that no terrorists are hiding in it. We study when polynomial-time algorithms exist to determine how many robots are needed to clear a given graph (minimum robot problem) and how a given number of robots should move on the graph to clear it with either a minimum sum of their travel distances (minimum distance problem) or minimum task-completion time (minimum time problem). The robots cannot clear a graph if the vertex connectivity of some part of the graph exceeds the number of robots. Researchers therefore focus on graphs whose subgraphs can always be cut at a limited number of vertices, that is, graphs of low treewidth, typically trees. We describe an optimal polynomial-time algorithm, called CLEARTHETREE, that is shorter and algorithmically simpler than the state-of-the-art algorithm for the minimum robot problem on unit-width unit-length trees. We then generalize prior research to both unit-width arbitrary-length and unit-length arbitrary-width graphs and derive both algorithms and time complexity results for a variety of graph topologies. Pursuit-evasion problems on the former graphs are generally simpler than pursuit-evasion problems on the latter graphs. For example, the minimum robot and distance problems are solvable in polynomial time on unit-width arbitrary-length trees but NP-hard on unit-length arbitrary-width trees.
منابع مشابه
Algorithms and Complexity Results for Pursuit-Evasion Problems
We study pursuit-evasion problems where a number of pursuers have to clear a given graph. We study when polynomial-time algorithms exist to determine howmany pursuers are needed to clear a given graph and how a given number of pursuers should move on the graph to clear it with either a minimum sum of their travel distances or minimum task-completion time. We generalize prior work to both unit-w...
متن کاملBranch-cut-price algorithms for solving a class of search problems on general graphs
We consider graph search problems involving an intruder and mobile searchers. The graph consists of nodes on which the intruder and searchers may be located, and edges on which these entities travel. Associated with each node is a set of nodes that are visible from that node. The goal is to find the minimum number of searchers needed to detect the intruder within a given time limit. We investig...
متن کاملRandomized Pursuit-Evasion with Local Visibility
We study the following pursuit-evasion game: One or more hunters are seeking to capture an evading rabbit on a graph. At each round, the rabbit tries to gather information about the location of the hunters but it can see them only if they are located on adjacent nodes. We show that two hunters suffice for catching rabbits with such local visibility with high probability. We distinguish between ...
متن کاملESP: pursuit evasion on series-parallel graphs
We study pursuit-evasion problems where pursuers have to clear a given graph of fast-moving evaders despite poor visibility, for example, where police search a cave system to ensure that no terrorists are hiding in it. If the vertex connectivity of some part of the graph exceeds the number of pursuers, the evaders can always avoid capture. We therefore focus on graphs whose subgraphs can always...
متن کاملSampling from social networks’s graph based on topological properties and bee colony algorithm
In recent years, the sampling problem in massive graphs of social networks has attracted much attention for fast analyzing a small and good sample instead of a huge network. Many algorithms have been proposed for sampling of social network’ graph. The purpose of these algorithms is to create a sample that is approximately similar to the original network’s graph in terms of properties such as de...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Auton. Robots
دوره 31 شماره
صفحات -
تاریخ انتشار 2011